Das allgemeine lineare Modell (ALM)
linear und allgemein
in Abgrenzung zum verallgemeinerten linearen Modell (GLM)
Produkt-Moment-Korrelation
= Quantifizierung des linearen Zusammenhangs zweier metrischer Variablen X, Y
standardisierte Kovarianz
Wertebereich [-1;+1]
Klassifizierung der Stärke des Zusammenhangs:
0.1 = schwach
0.3 = mittel
0.5 = stark
reagiert sensitiv auf Ausreißerwerte
Darstellung: Streudiagramm
Regression vs. Korrelation
Regressionsgewicht
Korrelation
Steigung im Streudiagramm unstandardisierter Variablen
Steigung im Streudiagramm standardisierter Variablen
Gerichteter Zusammenhang
Ungerichteter Zusammenhang
Asymmetrisch
Symmetrisch
Partialkorrelation rXY•Z
= Zusammenhang zweier metrischer Variablen X und Y, bereinigt (kontrolliert) um Z
Berücksichtigung einer kontinuierlichen Drittvariable Z
Aufdeckung von Scheinzusammenhängen
Aufdeckung von maskierten Zusammenhängen
Korrelation zweier Regressionsresiduen (EY(Z) und EX(Z)
Semipartialkorrelation
Drittvariable Z wird nur aus einer Variable (hier: Y) auspartialisiert
Korrelation des Regressionsresiduums EY(Z) mit X
Auch berechenbar aus Korrelationen nullter Ordnung
Einfache Lineare Regression
Darstellung als Pfadmodell:
Darstellung als Modellgleichung:
Y = Kriterium/AV
X = Prädiktor/UV
E = Residuum/Fehlervariable
b0 = Achsenabschnitt, Intercept
b1 = Regressionsgewicht, Slope
1 = Konstante
Teile des Pfadmodells
Kreis = latente Variablen
Dreieck = Konstanten
Pfeil = Einfluss
Zahl an Pfeil = Gewichtung des Einflusses
Varianten der Schreibweise für Modellgleichung
Stichprobe
Population
Parameter b oder beta dach
beta
Beobachtete Werte
Vorhergesagte Werte
y und e (Residuum)
y Dach (kein e)
Merkmalsträger*innen -Schreibweise
Variablenschreibweise
Kleinbuchstaben mit Personenindex
Großbuchstaben ohne Personenindex
Index m = Person (1-n Stichprobenumfang)
Index j = unabhängige Variable (1-k Anzahl der Prädiktoren)
Schätzkriterium
—> für das Bestimmen der Parameter
= Kriterium der kleinsten Quadrate (OLS)
Falls Annahmen zutreffend sind, sind die geschätzten Parameter unverzerrt, konsistent und effizient
hat wichtige Eigenschaften der Residualvariable E zur Folge
Erlaubt die Zerlegung beobachteter Messwerte in Quadratsummen
Regressionsresiduum E
= Abweichung des vorhergesagten vom beobachteten Wert
die Summer der Abweichungen beträgt Null
die Summe der quadrierten Abweichungen ist minimal (OLS)
Residuen sind unabhängig von den Ausprägungen des Prädiktors (Korrelation gleich null)
Residuen sind unabhängig von den Ausprägungen der vorhergesagten Werte
Quadratsummenzerlegung
—> Jeder Messwert lässt sich zerlegen in den auf Basis des Regressionsmodells erwarteten Wert und die Abweichung von diesem Wert (das Residuum)
—> Gilt auch für die Summen quadrierter Abweichungen (Quadratsummen)
—> Gilt annähernd für die Stichprobenvarianzen
Übersicht Modellvarianten (+Modellgleichungen)
Last changed2 years ago