draw the 3 typical forms of utlity functions
ideal point model
vector model
part worth model
Attributes should be…
independent from each other -> every manufacturer of phones could offer different case materials
mutually exclusive -> phone manufactured by only one manufacturers
as precise as possible declaring the description
with a similar number of attribute levels -> otherwise attributes with many levels are overvaluated
attrubute levels which are combined in a way that no impossible combinations of attribute levels are generated, but unlikely combinations can occur
influencable by company manufacturing the product
compensatory relationship to each other
designed so that they have realistic attribute range
not unacceptable
Most important factors is the determination of attributes and levels
Explain the 3 types of approaches to determine attribute levels
approaches not based on pre study
approaches based on qualitative pre studies
approaches based on quantitative pre study
researchers or managers instinct, product reviews
process tracking
personal interviews
Focus groups
direct rating of attribute importances
repertidy grid technique
=> how many attributes should be included?
Which approach is the most popular for
compositional approach
decompositional approach
compositional => self explicated
decompositional => conjoint analysis
hybrid => tradition hybrid conjoint
Explain Decompositional Approaches and Compositional Approaches
Decompositional
Dekompersitionelle Ansätze erfordern von den Befragten eine Bewertung ganzer Produktalternativen und zerlegen diese Bewertungen in Nutzenwerte für die einzelnen Attribute. Diese Methoden nehmen an, dass die Befragten rationale Entscheidungen treffen und alle Informationen und Abwägungen berücksichtigen, was zu einem hohen kognitiven Aufwand führt und viele Bewertungen erfordert, um genaue Präferenzen zu ermitteln.
Compositional
Kompositionelle Ansätze erfordern, dass die Befragten direkt ihre Präferenzen für die einzelnen Attributsstufen einer Alternative angeben. Diese Methoden nutzen häufig Bewertungsskalen und werden dafür kritisiert, dass sie die Abwägungen zwischen verschiedenen Attributen nicht erfassen. Der kognitive Aufwand für jede Bewertung bleibt konstant, unabhängig von der Anzahl der zu bewertenden Produkte und Attribute, was zu einer vereinfachten und möglicherweise unrealistischen Bewertungssituation führt.
Why Conjoint Analysis?
Predict the market share of a proposed new product, given the current offerings of competitors
Predict the impact of a new competitive product on the market share of any given product in the marketplace
Determine consumers’ willingness to pay for a proposed new product
Quantify the trade-offs customers or potential customers are willing to make between the various attributes or features being considered in the new product design
The idea of conjoint analysis
The Idea:
modify attribute levels to construct different product concepts
rank or rate (traditional) or choose between (CBC) theses product profiles
find out the preference of customer
traditional Conjoint analysis
Design product and attribute levels of profiles -> responders evaluate utitlity of each profile -> identidy responders preference
Bewertung einzelner Produktprofile
explain the 2 types of stimuli (stimuli are the product profiles)
profile method
trade of method
combination of one level of each attribute
shows whole product profile
combination of only two attributes
shows only 2 profiles where you can decide between (trade off)
what are stimuli?
combination from attribute levels of the product
Number of stimuli
reduce number of stimuli to a practical subset of stimuli
3 Attributes with 3 levels each => 27 Stimuli
fractional factorial design
How many stimuli do we face when having 3 attributes with 3 levels each
3³ = 27 Stimuli
Estimate utility values
utility values (ß) schould fit the ranks as best as possible
MONANOVA or LINMAP for ordinal scale
OLS for interval scale
Normalization in conjoint analysis
Befor: Analysis of utility values on the individual level => Aim: compare utility of several products => normalize utilities
ßgesamt = ßgesamt - ßmin // Σ ßmax - ßmin
to calculate w => w = ßmax // Σ ßmax
utility function = U =
Choice Bases Conjoint (CBC)
respondents choose between product concepts (like in reality)
discrete choice modelling
-> multinomial logistic regression is needed
What Conjoint Analysis has a “no choice” parameter?
Pros and cons on CBC
Pro
realistic decision making situation
experimental design is pooled across respondents -> more flexibel designs
allows a “none” option
Con
low information density for each participant
CBC surveys less information
CBC in comparision to traditional conjoint analysis
most realistic form of preference measurement
A no-choice parameter can be estimated capturing low purchase intention
flexibility in the design of choice stimuli
new und better way to incentive aling respondents?
CBC: bezieht sich auf Wahlentscheidungen zwischen ganzen Produkten, praxisnah
Conjoint: Attribute werden verglichen
CBC 7 Steps
determine attribute + levels
design experiment -> choice tasks
determine number of choice tasks
design of stimuli
explicating the decision context
test the efficiency of design
respondents answer choices
estimate partworth utility
evaluate validity of the model
interpret results
perform market simulations
Important questions to solve for CBC
How many concepts (alternatives) per tasks?
How many tasks per survey?
Include a no-choice option?
generally 2 to 5 concepts
graphical representation affect the decision
respondents take about 7 minutes to answer 20 tasks -> 20 second / task
minimum is one task
generally 12 to 18 tasks
pro: not forced to choose, information about interests in product
cons: much less information for utility, difficult to interpret
what are the pros and cons on a no-choice option
Validity of the Model
model fit -> how plausible are the estimated utility values
Specification of utility function
Utility function composes of a … and a …
Utility function composes of a deterministic (= value of attributes) and a stochastic (latent, not directly observable) component
𝑢ℎ,𝑖 = 𝑣ℎ,𝑖 + 𝛿ℎ,𝑖
S. 52 einfügen?
What is the most used method?
CBC is most used
Key decision areas and which method is used in these areas
number of attributes
mode of interviewing
sample size
interview time
pricing research
menus
<8 = cbc
>8 = ACA, ACBC, PCPM, ASE
require computer: ASE, ACA, ACBC
pen and paper: CBC, TCA, PCPM
no use of CBC by small sample size (<100)
ACA, PCPM, ASE possible for small sample size
few minutes = CBC
more interview time needed = ACA, PCPM, ASE
CBC and ACBC
Sawtooth Software has created Menu based conjoint for this purpose
Last changed3 months ago