Buffl

Altklausuren Flugmechanik_Fragensammlung

MR
von Mario Ernesto R.






In dieser Aufgabe werden ruhende Atmosphäre (kein WInd) und ein symmetrisch gebautes Flugzeug vorrausgesetzt.


a) Wie ist das geodätische System definiert? Beschreiben Sie die Lage des Ursprungs und die Achsenrichtungen. Eignet sich das System zur Beschreibung der Position der FLugzeuge? (Begründung zählt!)

b) Geben Sie die deutsche Bezeichnung von µ, γ, χ, α, β an.

c) Gesucht sei die Transformation vom geodätischen ins körperfeste Koordinatensystem bzw. deren Transformationsmatrix. Geben Sie die Transformationsmatrizen T1,2,3 und deren Winkel in griechischen Buchstaben an ohne sie koeffizientenweise auszuschreiben. Wie ist die deutsche Bezeichnung der Winkel?

d) Wie kann man Tak = Tak^-1=[T_1(µ)]^-1 einfach berechnen, ohne eine Matrixinversion wie bei allgemeinen Matritzen durchzuführen?

e) Welchen Winkel beschreibt die Neigung der Trägerachse bzgl. der geodätischen (x-y)-Ebene?

Welchen Winkel beschreibt die Geschwindigkeit bzgl. der geodätischen (x-y)-Ebene?

Welchen Winkel beschreibt die Auslenkung des Auftriebs aus der Vertikalebene?

f) Ein FLugzeug befindet sich im symmetrischen, stationären Steigflug Richtung Norden mit konstanter Bahnneigung. Welcher der in b) und c) genannten Winkel sind dann zwangsläufig Null?

=> berechnen Sie T_fg wie in c) mit den Winkeln, die nicht null sind

=> berechnen Sie Tfg=Tfa*T_ak*T_kg jeweils mit den Winkeln, die nicht Nulll sind

Beschreiben Sie T_Fg wieder nur mit den Elementrotationen T1,2,3 ohne die T_i Koeffizientenweise darzustellen

g) Welcher Zusammenhang ergibt sich für die Drehwinkel. wenn man die beiden Darstellungen für T_fg gleichsetzt?



Symmetrische Flug in der geodätischen Ebene über ruhender flacher Erde. Die Bewegungsgleichung lautet wie folgt:

Fres= Betrag des Schubes, Mf = das durch den Schub induzierte Nickmoment

a) die Gleichungen gelten unter der Voraussetzung, dass der Schub in Richtung der Längsachse wirkt. Wie bezeichnet man den Winkel zwischen Schubvektor und Längsachse, wenn diese Voraussetzung nicht zutrifft?

b) VA ist der Betrag der Antrömgeschwindigkeit. Welchen anderen Geschwindigkeitsbegriff gibt es in Gegenwart von Windeinfluss? Wie hängen die beiden Größen zusammen?

c) für welche Größen stehen die Symbole q und M=MA+MF? Welche physikalischen Einheiten haben M und das Trägheitmoment Iy?

d) welcher Zusammenhang besteht zwischen MA und dem Beiwert Cm? Beschreiben Sie die Faktoren zwischen MA und Cm mit ihren üblichen Symbolen und den deutschen Begriffen

e) Was sind die Steuerungen von System 1? Anders ausgedruckt: Welche Steuerflächen bzw Steuereingriffe stehen den Piloten zur Verfügung, um die Flugbahn in der Vertikalebene zu beeinflussen?

Geben Sie zu allen Kräften und Momenten in den Gleichungen an, von welchen Steuerungen sie abhängig sind.

f) Leiten Sie aus den Gleichungen eine DGL für den Flugwindneigungswinkel her. Tipp: Differenzieren Sie den in a) angesprochenen Zusammenhang

g) Wir betrachten schließlich den Spezialfall des symmetrischen, stationären Horizontalfluges. Wir machen die Vereinfachung sin(alpha)=0, cos(alpha)=1 und nehmen an, dass W und A nicht von n abhängen.

Leiten Sie unter diesen Annahmen aus den Gleichungen 3 Bestimmungsgleichungen für die Größen alpha, n, deltaf(Schubhebel) her. Welche Unbekannte ergibt sich aus welcher Gleichung und in welcher Reihenfolge sind die Gleichungen zu lösen?

Author

Mario Ernesto R.

Informationen

Zuletzt geändert